An MCTS-DRL Based Obstacle and Occlusion Avoidance Methodology in Robotic Follow-Ahead Applications

Sahar Leisiazar, Edward J. Park, Angelica Lim and Mo Chen

THE REAL PROPERTY AND IN THE REAL PROPERTY AND INTERPOPERTY AND INTE

SIMON FRASER UNIVERSITY

Introduction

An autonomous mobile robot that follows a target person in front of them within a certain distance while ensuring avoidance of occlusion and collision avoidance.

Applications:

- Shopping carts
- Autonomous suitcases
- Recording physical activity
- Monitoring elderly people

Contribution

- A follow-ahead mobile robot
 - navigates in front of a target person
 - ensuring avoidance of collisions and occlusions caused by surrounding objects.
- A high-level decision-making algorithm
 - generates navigational goals
 - adoptes the MCTS in the context of path planning
- Integrating Monte Carlo Tree Search (MCTS) with Deep Reinforcement Learning (DRL)
 - enhances the performance of the decision-making
 generates goals in any complex environments with a variety of obstacles.

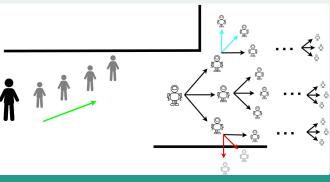
Background

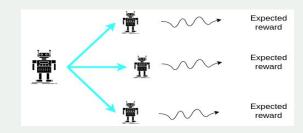
Previous paper (LBGP):

- In an obstacle free environments
- RL to estimate human trajectory and output goal point.

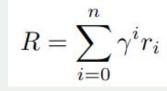
Nikdel, Payam, Richard Vaughan, and Mo Chen. "Lbgp: Learning based goal planning for autonomous following in front." In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3140-3146. IEEE, 2021.

Methodology


MCTS-RL generates goals
TEB planner navigates the robot


Monte Carlo Tree Search

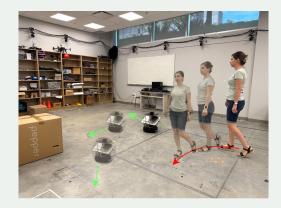
- Inputs:
 - Human's traj prediction for 3 seconds,
 - An occupancy map of the environment,
- Expands a tree to find a best goal point for the next 3 sec,
- Considers robot and human's current and future poses as the nodes of the tree,
- Assigns the value of (-1) to a node when occlusion or collision happens,
- The value of (1) means that the robot is in front of the human,
- Selects a leaf node with the highest value as a goal point.
- Updates the goal point each $\delta t = 0.5$ sec



Reinforcement Learning

Is trained to estimate the expected return of each action and helps MCTS to evaluate each node

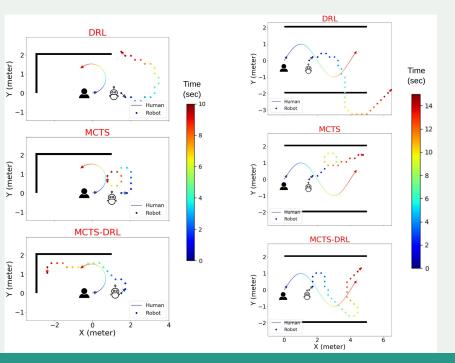
Return is computed as discounted sum of rewards throughout an episode


Receives a higher reward if it stays in front of the human within certain distance.

$$\begin{aligned} r &= \max(r_d + r_{\alpha}, -1), \\ \text{where } r_d &= \begin{cases} -(1 - d_h) & 0.5 < d_h < 1 \\ 0 & 1 < d_h < 2 \\ -0.25(d_h - 1) & d_h < 5 \text{ or } d_h > 2 \\ -1 & \text{otherwise} \end{cases} \\ \text{and } r_{\alpha} &= (45 - \alpha)/45 \end{aligned}$$

Experiments and Results

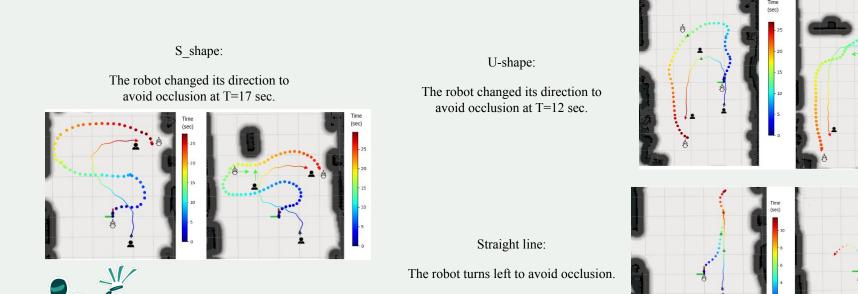
- 1. MCTS-DRL vs MCTS and DRL
- 2. Follow-ahead in an obstacle-free environment
- 3. Performance Evaluation with and without Obstacles

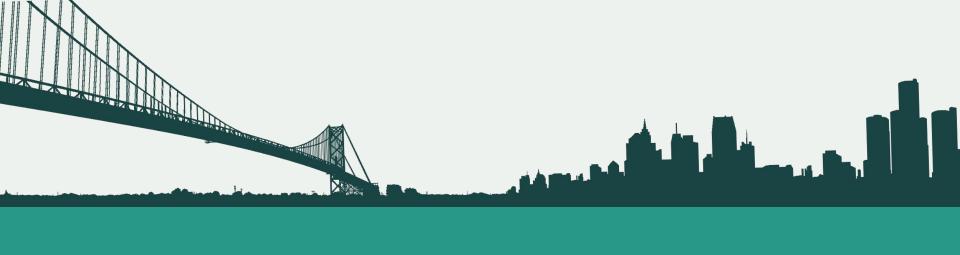


MCTS-DRL vs MCTS and DRL

- The DRL approach is unable to effectively follow the human and avoid obstacles
- The MCTS approach fails to generate consistent results, due to its random action selection
- MCTS-DRL demonstrates a superior performance
- Table shows sum of rewards through 20 trials

Human Trajectory	DRL	MCTS	MCTS-DRL	
Circle	-17.95	2.87 ± 5.96		
S-shaped	-21.84	-3.83 ± 4.33	-1.61	


Follow-ahead in an obstacle-free environment


- Comparing mean distance and orientation of robot with LBGP method and ours
- No obstacle
- We achieve comparable results to LBGP

Human Trajectory	Method	Distance (m) Mean \pm std	orientation(α (deg)) Mean \pm std	Human Trajectory	Method	Distance (m) Mean \pm std	orientation(α (deg) Mean \pm std
↑ •© −	MCTS-DRL LBGP	$\frac{1.32 \pm 0.11}{1.24 \pm 0.3}$	$\begin{array}{c} \textbf{-3.47} \pm \textbf{7.8} \\ \textbf{2.1} \pm \textbf{14.5} \end{array}$		MCTS-DRL LBGP	$\begin{array}{c} {\bf 1.33} \pm {\bf 0.34} \\ {\bf 1.86} \pm {\bf 0.4} \end{array}$	$\begin{array}{c} -28.33 \pm 62.24 \\ \textbf{16.9} \pm \textbf{28.3} \end{array}$
<u>ه</u>	MCTS-DRL LBGP	$\begin{array}{c} 1.16 \pm 0.18 \\ \textbf{1.61} \pm \textbf{0.4} \end{array}$	-15 ± 16.25 30.2 ± 34.6	j.	MCTS-DRL LBGP	$\frac{1.20 \pm 0.32}{2.09 \pm 0.3}$	-19.01 ± 49.51 -4.9 ± 26.7
¢.	MCTS-DRL LBGP	$\begin{array}{c} 1.12 \pm 0.1 \\ \textbf{1.63} \pm \textbf{0.4} \end{array}$	4.7 ± 17 -8.4 ± 26.6	ë	MCTS-DRL LBGP	1.21 ± 0.36 1.81 ± 0.6	-28.64 ± 55.17 35.8 ± 33.1
jë •	MCTS-DRL LBGP	$\begin{array}{c} \textbf{1.47} \pm \textbf{0.32} \\ 1.34 \pm 0.4 \end{array}$	-8.76 ± 132.04 20.9 ± 37.8	in the second se	MCTS-DRL LBGP	$\begin{array}{c} \textbf{1.51} \pm \textbf{0.2} \\ \textbf{n/a} \end{array}$	$\begin{array}{c} \textbf{12.01} \pm \textbf{142.07} \\ \textbf{n/a} \end{array}$
	MCTS-DRL LBGP	1.44 ± 0.33 1.99 ± 0.2	$\begin{array}{c} 14.39 \pm 119.68 \\ \textbf{-16.8} \pm \textbf{18.6} \end{array}$	ê •	MCTS-DRL LBGP	1.53 ± 0.34 n/a	-10.01 \pm 98.97 n/a

Performance Evaluation with and without Obstacles

Thank you

Scan to view the project description