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Adapting to Frequent Human Direction Changes in Autonomous
Frontal Following Robots

Sahar Leisiazar', Seyed Roozbeh Razavi Rohani?, Edward J. Park!, Angelica Lim?, and Mo Chen?

Abstract— This paper addresses the challenge of robot fol-
low ahead applications where the human behavior is highly
variable. We propose a novel approach that does not rely
on single human trajectory prediction but instead considers
multiple potential future positions of the human, along with
their associated probabilities, in the robot’s decision-making
process. We trained an LSTM-based model to generate a
probability distribution over the human’s future actions. These
probabilities, along with different potential actions and future
positions, are integrated into the tree expansion of Monte Carlo
Tree Search (MCTS). Additionally, a trained Reinforcement
Learning (RL) model is used to evaluate the nodes within
the tree. By incorporating the likelihood of each possible
human action and using the RL model to assess the value
of the different trajectories, our approach enables the robot
to effectively balance between focusing on the most probable
future trajectory and considering all potential trajectories. This
methodology enhances the robot’s ability to adapt to frequent
and unpredictable changes in human direction, improving its
navigation and ability to navigate in front of the person.
The codes and supplementary videos of the experiments are
available on the project page, which can be accessed through
this https://saharleisiazar.github.io/follow-ahead-adoption/

I. INTRODUCTION

The development of companion robots has enabled them
to effectively follow and assist humans in various tasks.
These robots are designed to follow a person autonomously,
providing assistance in various contexts, such as carrying
load and assisting with mobility. Examples like autonomous
suitcases and shopping carts demonstrate the practical appli-
cations and benefits the front-following robots. These robots
must navigate in complex environments, avoiding obstacles
and adapting to changes while maintaining proximity to the
user. For the elderly, these robots offer another application
by ensuring their safety and promoting their independence,
enabling them to move confidently within their homes or in
public spaces while receiving assistance when needed.

Various approaches have been proposed for human-
following robotic applications, aiming to detect a target
person, compute their position, and plan a path for robot nav-
igation. These applications utilize different sensors, including
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Fig. 1: Real-world experiment showcasing the robot’s ability
to follow a human from the front while avoiding obstacles.
The figure illustrates an example of the tree expansion
process, with blue and red arrows representing the potential
moves for the robot and human, respectively. The robot
expands the tree and selects nodes that allow it to maintain
a position in front of the human, while eliminating branches
that could lead to collisions with obstacles.

LiDAR [1] and cameras [2], as well as various sensor fu-
sion techniques applied to both Unmanned Ground Vehicles
(UGVs) [3], [4] and Unmanned Aerial Vehicles (UAVs) [5].
Another challenge in solving the human-following problem
is computing the relative distance of the person with respect
to the robot [3] and predicting the person’s future trajectory.
Nikdel et al. [6] proposed a model for human motion and
used an Extended Kalman Filter (EKF) to estimate the
velocity and direction of the person. To predict the future
trajectory of the target person, Mahdavian et al. [7] and
Nikdel et al. [8] proposed a non-autoregressive transformer
and a Reinforcement Learning (RL) model, respectively. Ad-
ditionally, various path planning approaches have also been
developed to navigate the robot in complex environments.
Khawaja et al. [9] and Peng et al. [10] employed a Model
Predictive Control (MPC) controller to navigate the robot by
utilizing predictions of the person’s future trajectory.

In our research, we have utilized Monte Carlo Tree
Search (MCTS) to address the robot navigation problem in
a front-following setting. MCTS has been widely applied
to solve complex problems in various domains, including
video games [11] and board games [12], [13]. In the field
of robotics, MCTS has been utilized in various studies to
address the challenge of robot path planning. For instance,
Dam et al. [14] demonstrated the convergence of MCTS
in path generation through analytical analysis. Furthermore,
MCTS has been integrated with neural networks [15], [16]
and RL [17], [18] to enhance the accuracy and performance
of path planning algorithms.
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In all previous works where MCTS has been applied to
various decision-making processes, either the states of a
single agent are solely critical for making decisions [14] or
MCTS involves two agents, with the states and actions of
both considered during tree expansion. In these cases, the
second agent either opposes [19] or cooperates [20] with the
first agent. To the best of our knowledge, our study is the first
to introduce a second agent that is neither fully cooperative
nor fully adversarial towards the main agent. Here, the main
agent (robot) takes into account all possible actions of the
second agent (human), each assigned a specific probability.

In this paper, we build upon our previous work [18]. In
that study, the robot was designed to detect a target person,
predict the human’s trajectory and future position, navigate,
and stay in front of the person. We integrated MCTS with
RL to simulate and evaluate promising moves for the robot
and selecting the optimal one. However, since the human
behavior is variable and may change repeatedly, we did
not previously account for different future positions for the
human in [18]. Instead, we now considered different potential
future positions for the human, along with their probabilities,
in the robot’s decision-making process. We trained an LSTM-
based model to generate a probability distribution over the
human’s future actions. The probabilities are integrated with
the Upper Confidence Bound (UCB) equation in MCTS. By
incorporating the likelihood of each possible human action,
the robot can balance between considering a single future
trajectory and considering all possible trajectories equally.
Figure. 1 illustrates a real-world experiment demonstrating
the proposed method from this paper. The robot observes
the human’s position, expands a decision tree based on
potential future positions for both the human and the robot,
and determines the optimal action to navigate in front of the
human while avoiding obstacles.

As in the previous work, the robot avoids moves that could
lead to a collision with the human and uses a map of the
environment to steer clear of surrounding obstacles.

The main contributions of the paper are as follows:

« To the best of our knowledge, this is the first work in the
human follow-ahead application that accounts for the
human’s natural tendency to change direction suddenly
and frequently;

e As far as we are aware, this is the first work to
implement MCTS in a scenario where two agents are
neither fully adversarial nor fully cooperative, with the
second agent remaining neutral to the main agent;

o Compared to our previous work, the decision-making
process in this approach relies solely on the current
positions of the human and robot, rather than on the hu-
man’s predicted future position. This enables the robot
to quickly adapt to changes in the human’s direction;

e The UCB equation in MCTS has been modified to in-
corporate the probability of the human’s future actions;

o The camera used to detect the person is mounted on
the robot, providing a first-person perspective instead
of a third-person view. A motor, controlled by a PID
controller, rotates the camera to maintain a clear view
of the person.

II. PROBLEM SETUP

In this paper, we present an algorithm designed for a
mobile robot to follow a human while accounting for the
dynamic nature of human movement, rather than assuming
that the human has a fixed goal point. Given that humans
frequently change direction, the algorithm considers a range
of possible future actions for both the robot and the human.
The robot is designed to evaluate the most promising and
probable moves and future positions of both the human and
itself a few time steps ahead, ultimately selecting the optimal
action for the current time step.

The algorithm is structured into three key modules:

o Decision tree: A module that takes the poses of both the
human and the robot as inputs. It expands the tree by
considering various potential actions for both the robot
and the human, ultimately generating the optimal action
for the robot.

o State evaluation: A module that assigns a value to
each node during tree expansion. Nodes with higher
values indicate that the robot and human are in a more
desirable relative position.

e Human future positioning probabilities: This module
estimates the likelihood of different future human posi-
tions for each human node during tree expansion. This
helps the algorithm to better anticipate and adapt to
realistic human behavior in real-world scenarios.

A. System Modeling

Due to the nature of MCTS, which is designed for discrete
settings, we considered six discrete actions for the robot:
three angular velocities {—4,0,4} rad/s and two linear
velocities {0.7,1.2} m/s. For the human’s action space,
assuming constant linear velocity, we defined three angular
velocities {—1.5,0,1.5} rad/s. Given that the robot follows
the human from the front, the robot’s angular velocity should
be greater than the human’s because even small deviations
in the human’s direction require the robot to make larger
turns to stay positioned in front of the human. Additionally,
robot’s linear velocity should be equal to or greater than the
human’s linear velocity to maintain the desired distance.

To simulate the next state of the robot and human based
on their actions, we use the Dubins car dynamics:

! x dcos(8 + )

y'| = |y| + [dsin(0+) ]|, (1)

o’ 0 P
where (x,y,0) represent the robot or human pose in the
ground plane, ¥ and d are the turning angle and traveled
distance at each time-step, respectively.

We also utilized the receding control horizon approach in
this work. This means the algorithm simulates and evaluates
the future states of both the human and the robot over several
time steps but only executes the optimal action for the next
immediate time step. After each action, the algorithm updates
with the new poses of the robot and human, then re-expands
the decision tree.

The integration of the RL and LSTM models with MCTS
introduces minimal computational delay, as their inference
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time is negligible compared to the time required for MCTS
tree expansion. To ensure real-time decision-making, we
implemented a stopping criterion by setting a fixed time limit
of 0.15 seconds. This approach allows the robot to operate
at a decision frequency of 5 Hz, corresponding to intervals
of 0.2 seconds, which meets the requirements for real-time
applications.

III. METHODOLOGY

In this paper, we propose a novel methodology com-
prising three integrated modules: RL, LSTM, and MCTS.
This approach introduces a unique consideration of distinct
action spaces for humans and robots, enabling the system
to dynamically capture and adapt to sudden changes in
human trajectories with reasonable probability. This inte-
gration builds on prior work by improving responsiveness
and adaptability, addressing challenges in scenarios with fre-
quent and unpredictable human direction changes. A detailed
explanation of these modules is provided in the following
sections.

A. Decision Tree

In this work, MCTS is used to determine the optimal
actions for a robot following a person ahead. As a heuristic
search algorithm, MCTS is effective for complex decision-
making, incrementally building a search tree through se-
lection, expansion, simulation, and backpropagation while
balancing exploration and exploitation. Unlike traditional
MCTS, which uses random sampling for node evaluation,
this approach integrates a trained RL model for node eval-
vation and an LSTM-based model to predict human action
probabilities. This combination enhances MCTS, enabling
the robot to make more accurate and robust decisions.

The implementation of MCTS is based on the approach
presented in [21] and has been modified to meet the specific
requirements of our problem. The process of tree expansion
utilized in this study is described by Alg. 1 and illustrated in
Fig. 2. During the tree expansion, we consider two distinct
layers: one for the robot and one for the human. Each
pair of layers represents a single time step (0.2 seconds),
during which the algorithm first evaluates the possible actions
for the robot, simulates the resulting next states, and then
incorporates the potential movements of the human at the
same time step in the tree expansion process. In Fig. 2, robot
nodes are depicted in blue, while human nodes are in red.

In the selection stage of the tree expansion, the process
starts at the root node, representing the current poses of
the human and the robot. From this point, the algorithm
computes the Upper Confidence Bound (UCB) value for each
child node using Eq. (2) and selects the child with the highest
value, continuing this selection process until it reaches a leaf
node. In this work, we modified the standard UCB approach
[21] by incorporating the probability of selecting each node
(P). The constant value (c) is set to 2 in this work. The
value of each node is derived from the state evaluation
module, while the probability is obtained from the human

Algorithm 1: The Proposed Approach

Data: Robot current pose = (., Yy, 0,)%°
Data: Human current pose = (zp, yn, 05)%
Data: RL model

Data: LSTM-fc model

Data: Occupancy map

Result: Best robot action

1 Root node = (2., Yy, 0, T, Y, On )0;

2 for 0.2 second do

3 while not leaf node do

4 for child in children do

5 UCB + V/n +c P (/2

6 end

7 Node < children (max UCB)

8 end

9 New leaf node < expansion(Node) ;

10 if if leaf node is safe then V < evaluation(leaf
node) ;

11 else Delete the node ;

12 if lead node is human node then P «+
Probability (leaf node) ;

13 else P+ 1/6;

14 Back_propagation(V);

15 end

16 Best_action < most_visited_child

future positioning probabilities module. These components
are detailed in sections III-C and III-B, respectively.

UCB:P<V+C\/1HHP> ®)
n n

During the expansion stage, all possible next states for
each action are simulated. If the selected leaf node is a robot
node (blue node), the algorithm uses the human’s actions and,
if it is a human node (red node), it uses the robot’s actions.
In the evaluation stage, newly added leaf nodes are first
assessed for safety to ensure they do not result in collisions
with obstacles or the human. If a leaf node directs the robot
toward an unsafe region, the algorithm removes that node
from the tree and stops further expansion from that branch.
In Fig. 1, the algorithm stops expanding the tree from the
right side due to existence of an obstacle.

Once safety is confirmed, the leaf nodes are evaluated
using the state evaluation module. In this module, all the
leaf nodes—both human and robot—are passed through the
trained RL model to assign a value to each node. This value
reflects how the robot’s pose is close to the desired pose in
relation to the human. In other words, the closer the robot is
to being directly in front of the human at a certain distance,
the higher the value assigned to the node. Afterward, the
human-related nodes (red nodes in the Fig. 2) are processed
through the human future positioning probabilities module.
This module assigns a probability to each human node based
on the history of the human’s positions over the past 3
seconds. It’s important to note that all the robot nodes (blue
nodes) are assigned an equal probability of 1/6, where 6
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Fig. 2: Tree expansion in MCTS: Blue nodes represent pos-
sible future positions of the robot, while red nodes indicate
potential future positions of the human. The letters ”L”, "R”,
”S”, and ”F” on the edges of the tree represent the actions:
Left, Right, Straight, and Fast, respectively.

represents the number of actions for the robot. Finally, In
the backpropagation stage, the value obtained for each leaf
node is propagated back through the tree, updating the values
of all parent nodes up to the root node.

At the end of expansion, the immediate child node with
the highest visit count (n) is selected as the optimal action
for the next time step. The algorithm then updates with the
new poses of the human and robot and re-expands the tree
for the subsequent time step.

B. Human’s Future Position Probability

Incorporating the probability of the human’s next possible
action enhances the performance of the decision-making
process. We initially utilized several recent off-the-shelf
methods for predicting multiple human trajectories [22], [23],
[24]. However, these methods did not produce robust and
accurate results for individual human predictions. The reason
may be attributed to the training of these models on datasets
[25], [26] include multiple individuals, where interactions
influence individual behaviors.

To address this, we trained an LSTM-fc model specifically
to sample a human’s position over a three-second interval
and generate probabilities for their next possible actions.
The fully connected layer attached to the LSTM enables the
model to output the likelihood of the human walking straight,
turning right, or turning left. For training, we employed
the Human3.6M dataset [27]. The dataset includes various
human motions. For this study, we selected the “walking*
motion to align with our application focus. The dataset was
downsampled from its original sampling frequency of 50
Hz to 5 Hz, resulting in a dataset of 700,000 points that
represent the 2D position of a walking person. For model
training, sequences of consecutive 15 points (equivalent to
three seconds at 5 Hz) were extracted In each sequence, the
final point was designated as the ground truth, while the
preceding points served as input for the model. This approach

enabled the model to predict the probability distribution for
the human’s future direction as left, right, or straight. The
trained model achieved an evaluation accuracy of 92.47%,
in predicting human directional changes.

Integrating this module with the tree expansion and utiliz-
ing the probabilities has the most impact when the human
follows a consistent trajectory without changes. Without this
module, the robot acts very cautiously, expecting the human
to change direction at each time step. However, with this
module, the robot is better able to navigate in front of the
human. The module helps the tree in selecting the human
leaf node with higher probabilities more frequently.

Case Study: Consider a scenario where the human has
been turning to the right for the past few time steps, and
the robot is positioned on the human’s left side. There is
a high probability that the human will continue turning
right in the future. Without this module, the robot assumes
equal probabilities for turning left, right, and going straight,
leading it to prefer staying on the human’s left side in case
the human turns left. However, with this module, the higher
probability of the human turning right (compared to left or
straight) causes the tree to be primarily expanded with the
human leaf node indicating a right turn. Consequently, the
robot is more confident in turning right to navigate in front
of the human.

As a final point, integrating this module with MCTS
allows the robot to account for occasional sudden changes
in the human’s trajectory, while also considering consistent
trajectory directions during other times.

C. Node Evaluation

Reinforcement Learning (RL) solves sequential decision-
making problems using value functions to predict accumu-
lated rewards for a policy [28]. However, they do not always
prevent catastrophic failures due to the inherent nature of
reward accumulation over time. Additionally, standard RL
can be data-inefficient and challenging for complex tasks, as
it requires training agents to make low-level decisions at ev-
ery time step. To address this challenge, we trained an agent
using the Asynchronous Actor-Critic (A2C) [29] method to
learn a policy and its corresponding value function. We then
integrated this value function with the tree expansion process
to evaluate different human-robot poses and assign a value to
each node in the tree. This approach helps the robot navigate
in front of the human while ensuring safety.

To train the agent, we defined random trajectories for the
human, conditioned only on the human’s current location.
This approach enhances the robustness and generalization of
the learned value function across a wide range of human
movements, without relying on a human motion prediction
model. This design choice allows the agent to make appro-
priate decisions regardless of the human’s actions. In the
simulation, at each step, the human can randomly change
direction by 20° to the right or left or continue in the current
direction. The robot’s observable state includes the relative
distance and orientation to the human. For the action space,
we use the same set of actions as described in section II-A.
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To train the agent effectively, we utilized a reward function
similar to that in [18], with targeted modifications informed
by empirical experimentation. The key minor adjustment
was to place greater emphasis on the human-robot angle,
encouraging the agent to maintain an optimal position in
front of the human. This adjustment improved the agent’s
ability to anticipate and adapt to directional changes and
overall navigational accuracy. These modifications were in-
troduced to better align the reward function with the specific
requirement of this study while maintaining the core structure
of the original in [18]. The modified reward function is as
follows:

r=7Tq + Tas (33)
d—0.5 0b<d<1
) 1-|d-15] 1<d<2
where ra =9 1 (95 2<d<4 (3b)
-1 otherwise
and v, — { (25— 1al})/25) a] <50 o
-1 otherwise

The reward function consists of two components: r, and
rq. The angle reward, r,, directs the robot to stay positioned
in front of the person, while the distance reward, r4, helps
the robot to maintain a specified distance range ahead of the
person. In the equations, o denotes the angle between the
person-robot vector and the person’s heading direction, and
d represents the relative distance between the human and the
robot.

IV. EXPERIMENTS

In this paper, we propose a novel methodology com-
prising three integrated modules: RL, LSTM, and MCTS.
This approach introduces a unique consideration of distinct
action spaces for humans and robots, enabling the system
to dynamically capture and adapt to sudden changes in
human trajectories with reasonable probability. This integra-
tion builds on prior work by improving responsiveness and
adaptability, addressing challenges in scenarios with frequent
and unpredictable human direction changes. In this section,
we present a series of experiments to evaluate the robot’s
performance and compare the results with those of previous
works [18] and [8]. The experiments are conducted in both
simulation and real-world settings. The algorithm requires
two inputs: (i) an occupancy map of the environment, in-
dicating the position of surrounding obstacles, and (ii) the
position and orientation of both the human and the robot,
which are obtained from a camera and odometry published
from the robot. We used the embedded 3D object detection
feature in the ZED 2 camera SDK by Stereolabs [21] to
capture the real-time 3D pose of the human target relative
to the camera. The camera is mounted on top of the robot
and attached to a motor. Additionally, a PID controller is
implemented to rotate the camera during the experiments,
ensuring a clear view of the human and accurately capturing
the human’s pose. Experimental observations showed that
allowing the motor to make small angle adjustments when
the human is off-center in the frame achieved a stable, noise-
free human pose for clear and reliable imaging. The ZED 2

camera captured human pose data at a frequency of 5 Hz
for smooth and reliable input for the algorithm. For the real-
world experiments, we used the RB1 base robot, a ZED2
camera, and a Dynamixel servo motor.

In the following sections, we compare the mean distance
error and angle of the robot relative to the human with
previous works. The desired distance between the human
and the robot is set to 1.5 meters, and the distance error
is defined as the difference between the robot’s actual
distance from the human and this target distance. Thus, a
smaller distance error value signifies better alignment with
the desired distance. Similarly, a lower angle value indicates
that the robot is positioned more directly in front of the
human, which is preferable. Additionally, we demonstrate
how incorporating the human future position probability
enhances the robot’s performance. For each of the mentioned
scenarios, we conducted 10 distinct simulation experiments
to compare the robot’s performance in comparison with
previous methods. The reason for using the simulation is
to ensure identical and controlled values for parameters such
as the human’s speed and the initial positions of both the
human and the robot. The final experiment demonstrates
how the robot effectively avoids collisions with surrounding
obstacles, while maintaining its position in front of the
human. It is worth noting that the significance of using an
RL model and its role in improving the robot’s performance
through decision-making process has already been estab-
lished in our previous work [18]. Additional supplementary
materials, including videos of the experiments, can be found:
https://saharleisiazar. github.io/follow-ahead-adoption/

A. Evaluating Robot’s Performance

In this experiment, we compare the robot’s performance
with our previous work [18]. The experiment is conducted in
both real-world and simulation environments, where different
trajectories are designed for a human to walk on at a velocity
of 0.7 m/s. During the experiments, we recorded the positions
of both the human and the robot using a Vicon optical
motion capture system (version 2.2). This data was utilized
to compute the mean relative distance and angle between
the human and the robot. It is important to note that the data
obtained from the Vicon system was only used for evaluation
and visualization purposes. The algorithm relied solely on
camera input data, with the camera mounted on top of the
robot and rotated by a motor to maintain a clear view of the
human during the experiments.

In the subsequent experiments, two distinct types of trajec-
tories were designed for the human subject. In one scenario;
the human suddenly changed their trajectory multiple times,
while in the other, the human had a smooth change of
direction. To quantify and define these terms: a sudden
change is characterized by the human altering their direction
by more than 45° degrees in a single time step, whereas a
smooth change involves turning approximately 10° degrees
at each time step.

1) Sudden changes in human trajectory: The purpose of
this experiment is to simulate scenarios where a human
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suddenly changes direction, a common occurrence in real-
world situations. Figures. 3 and 4 illustrate the trajectories
of the human and the robot during two different experiments
conducted with the RB1 base robot. In both experiments, the
human changes their trajectory twice within a time frame of
about 10 to 14 minutes. The left image in both figures illus-
trates the human and robot trajectories using the proposed
algorithm, while the right image shows the trajectories using
the previous approach. The rainbow color scale indicates the
time dimension, with red and purple denoting the first and
last time steps, respectively. As depicted, the robot effectively
adjusts to the human’s new trajectories and consistently
follows from the front.

In Fig. 3, the mean angle achieved using the proposed
algorithm is 0.17 rad, compared to 0.72 rad with the previous
work, indicating a significant improvement. In Fig. 4, the
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Fig. 3: Comparison of robot trajectories between the pro-
posed algorithm and the previous method. (i) The left image
shows the human and robot trajectories using the proposed
algorithm, achieving 0.17 rad mean angle, (ii) the right image
displays the trajectories using the previous method, achieving
0.71 rad mean angle. The rainbow color scale indicates the
time dimension, with red and purple denoting the first and
last time steps, respectively.
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Fig. 4: Comparison of robot trajectories between the pro-
posed algorithm and the previous method. (i) The left image
shows the human and robot trajectories using the proposed
algorithm, achieving 0.37 rad mean angle, (ii) the right image
displays the trajectories using the previous method, achieving
0.48 rad mean angle. The rainbow color scale indicates the
time dimension, with red and purple denoting the first and
last time steps, respectively.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025

TABLE I: Follow-ahead comparative results for human tra-
jectories with sudden changes. The closer the distance error
and orientation values are to 0, the better the performance.

Human Method  Distance error (m)  Angle (rad)
Trajectory Mean =+ std Mean =+ std
% Ours 0.05+0.09 0.03+0.35
[ ] [18] 0.1240.06 0.15 £0.39

-
q Ours 0.07+0.09 0.354+0.59
8] 0.08+0.09 0.28 £+0.69

2

TABLE II: Follow-ahead comparative results for human tra-
jectories with smooth changes. The closer the distance error
and orientation values are to 0, the better the performance.

Human Method  Distance error (m) Angle (rad)

Trajectory Mean =+ std Mean =+ std

, Ours 0.13+0.06 0.16+0.14

[18] 0.134+0.06 0.16+0.14

® [8] 0.17 £ 0.36 0.2340.44
-

Ours 0.05+0.06 0.0440.2

[18] 0.1-£0.07 0.05 +£0.38

@ [8] 0.41 £ 0.43 0.334 0.51
-

Ours 0.2240.23 0.134+0.11

[18] 0.2440.15 0.20 £0.13

& [8] 0.32 £ 0.3 0.334 0.48

mean angle with the proposed algorithm is 0.37 rad, while
the previous work yields 0.48 rad, demonstrating further
enhancement in performance.

Moreover, the results of the simulation experiments com-
paring the two approaches are shown in Table I, present-
ing the mean distance error and angle achieved with each
method. For each trajectory, we conducted several experi-
ments with random initial pose of the robot with respect to
the human. As a result, we conclude that with the proposed
approach, the robot can adapt to the human’s sudden changes
more quickly and follow the human from the front more
effectively.

2) Smooth changes in human trajectory: Similar to the
previous experiment, additional simulation tests were con-
ducted to compare the robot’s performance when the hu-
man exhibits smooth changes in their trajectories. Table II
presents the mean distance error and angle obtained using
three methods: the proposed approach, the method from [18],
and the method from [8]. We conclude that although the
previous approaches allow the robot to navigate in front of
the human, the proposed method enables the robot to follow
the human more effectively and adapt to changes in the
human’s direction more rapidly.

B. Sharp Turn

In this experiment, four trajectories were designed for the
human, with the same start and end points in all trajectories.
The initial pose of the robot was also kept consistent. The
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TABLE III: Comparison of the mean relative distance error
and angle between the robot and human using two different
methods. The data are presented for four human trajectories,
each with varying turn radii, to evaluate the performance of
the methods under different turning conditions.

Human Method  Distance error (m)  Angle (rad)
Trajectory Mean = std Mean =+ std
. Ours 0.0240.1 0.6240.7
2. 6 | [18] 0.0+0.1 0.64 £0.7
Ours 0.08+0.13 0.61+0.5
2 _@J [18] 0.0-£0.1 0.72 +0.60
, Ours 0.240.1 0.361+0.4
2 [18] 0.13+0.2 0.65 0.5
j/ Ours 0.3£0.1 0.10+0.10
25 [18] 0.160.10 0.51 £0.30

only difference was in how the human executed the turns: in
the first trajectory, the human made a sharp 90° turn; while
in subsequent trajectories, the radius of the turn gradually
increased. Table III shows the mean relative distance error
and angle across simulation experiments for both the pro-
posed method and the method in [18]. The results indicate
that the proposed method enables the robot to follow the
human more effectively, maintaining a position in front of
the human with a smaller angle value.

C. Ablations for Different UCBs

In this section, we perform an ablation study to determine
the most effective method for integrating the probability of
the human’s next actions with the UCB value in MCTS. As
discussed in section. III-B, the probability of the human’s
next action is most impactful when the human maintains a
consistent trajectory without changing direction. To investi-
gate this, we designed four trajectories for the human: walk-
ing straight, and turning to the right by 4°,8°,12° at each
time step. We conducted experiments for each trajectory,
varying the robot’s pose relative to the human and reported
the average reward, in Eq. (3), obtained from each time step.

The evaluation compared different versions of the modified
UCB equations (Egs. 4 and 2) based on the mean rewards
achieved, focusing on turning right due to similar results for
both directions. The results, presented in Table IV, showed
that Eq. 2 outperformed Eq. 4 in mean reward. Incorporating
the probability of the human’s next action further improved
the robot’s performance, particularly as the human’s turning
angle increased.

UCBy = K +c M (4a)
C n

veB, =Y 1 pey/t09me) (4b)
C n

UCB, = P% te @ (4¢)

TABLE IV: Comparison of mean rewards achieved using
different UCB equations, Eqgs. (4) and Eq. (2), for various
human trajectories.

Trajectory  Turn Angle UCBg  UCB; UCB2 Eg. (2)
. T 0 1.64 1.58 1.58 1.65
+0.12 £0.16 +0.10 +0.11
2
, /v 4 1.45 15 1.58 1.50
. +0.1  40.08 £0.11 40.07
[ )
5 8 0.97 0.9 1.18 1.37
® +0.23 +0.25 £0.26 +0.20
-tk
12 -0.19 -0.13 0.18 0.30
e +0.40 +0.44 +£0.57 40.52
-t

D. Obstacles Avoidance

In this section, we conducted an experiment to evaluate the
robot’s obstacle avoidance performance. Figure. 5 illustrates
two distinct scenarios. In the left image, a box is placed
in the environment, and the human walks toward it. When
the robot reaches the box before the human, moving straight
is no longer an option, so the robot explores turning left
or right. Given that the human’s direction is slightly to the
right, the robot chooses to turn right. By the time the human
reaches the box, the robot is already positioned on the right
side of it.

In the right image, the human walks toward the obstacle
and stops in front of it, while the robot turns right to avoid
a collision and then turns left to reposition itself in front of
the human. Similar to the previous experiments, the human’s
trajectory is depicted with a line, while the robot’s path is
shown with squares, both in rainbow-colored.
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Fig. 5: Evaluation of the robot’s obstacle avoidance perfor-
mance. In the left image, the robot reaches the box before
the human, turns right to avoid the collision. In the right
image, the human walks toward the obstacle and stops in
front of it, while the robot turns right to avoid the obstacle
and then turns left to stay in front of the human. The human’s
trajectory is depicted with a rainbow-colored line, and the
robot’s path is shown with rainbow-colored squares.
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V. CONCLUSIONS

In this paper, we introduced a novel approach for human
follow-ahead robots that adapts to the unpredictable and
dynamic nature of human behavior.

Unlike previous approaches that depend on predicting the
human’s trajectory and goal, our method considers various
potential actions and corresponding future positions for the
human in the decision-making process. This allows the
robot to anticipate abrupt changes in the human’s trajectory,
enabling it to rapidly adapt to sudden shifts. Additionally, we
integrated an LSTM-based model to generate a probability
distribution over the human’s future actions, incorporating
these probabilities into the MCTS framework.

By considering different potential actions and future po-
sitions for the human during tree expansion, the robot is
prepared for changes in the human’s trajectory at each time
step. However, integrating probability into the tree expansion
ensures that the robot is not overly cautious, allowing it
to follow the human more smoothly and quickly when the
human walks along a trajectory without sudden direction
changes.

Through extensive experiments in both simulated and real-
world environments, we demonstrated the effectiveness of
our approach in maintaining the robot’s position in front of
the human while successfully avoiding obstacles. The results
demonstrate that the robot effectively navigates complex
environments and swiftly adapts to changes in the human’s
trajectory, ensuring the safety of the user and the operational
efficiency of the robot.
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